On the structure of arbitrarily partitionable graphs with given connectivity

نویسندگان

  • Olivier Baudon
  • Florent Foucaud
  • Jakub Przybylo
  • Mariusz Wozniak
چکیده

A graph G = (V , E) is arbitrarily partitionable if for any sequence τ of positive integers adding up to |V |, there is a sequence of vertex-disjoint subsets of V whose orders are given by τ , and which induce connected subgraphs. Such a graph models, e.g., a computer network which may be arbitrarily partitioned into connected subnetworks. In this paper we study the structure of such graphs and prove that unlike in some related problems, arbitrarily partitionable graphs may have arbitrarily many components after removing a cutset of a given size ≥2. The sizes of these components grow exponentially, though. © 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural properties of recursively partitionable graphs with connectivity 2

A connected graph G is said to be arbitrarily partitionable (AP for short) if for every partition (n1, . . . , np) of |V (G)| there exists a partition (V1, . . . , Vp) of V (G) such that each Vi induces a connected subgraph of G on ni vertices. Some stronger versions of this property were introduced, namely the ones of being online arbitrarily partitionable and recursively arbitrarily partition...

متن کامل

Structural properties of recursively partitionable graphs with connectivity 2 ∗ Olivier

A connected graph G is said to be arbitrarily partitionable (AP for short) if for every partition (n1, ..., np) of |V (G)| there exists a partition (V1, ..., Vp) of V (G) such that each Vi induces a connected subgraph of G on ni vertices. Some stronger versions of this property were introduced, namely the ones of being online arbitrarily partitionable and recursively arbitrarily partitionable (...

متن کامل

On three polynomial kernels of sequences for arbitrarily partitionable graphs

A graph G is arbitrarily partitionable if every sequence (n1, n2, ..., np) of positive integers summing up to |V (G)| is realizable in G, i.e. there exists a partition (V1, V2, ..., Vp) of V (G) such that Vi induces a connected subgraph of G on ni vertices for every i ∈ {1, 2, ..., p}. Given a family F(n) of graphs with order n ≥ 1, a kernel of sequences for F(n) is a set KF (n) of sequences su...

متن کامل

On the Eccentric Connectivity Index of Unicyclic Graphs

In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

متن کامل

Dense arbitrarily partitionable graphs

A graph G of order n is called arbitrarily partitionable (AP for short) if, for every sequence (n1, . . . , nk) of positive integers with n1 + · · · + nk = n, there exists a partition (V1, . . . , Vk) of the vertex set V (G) such that Vi induces a connected subgraph of order ni for i = 1, . . . , k. In this paper we show that every connected graph G of order n ≥ 22 and with ‖G‖ >

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2014